
Journal of Applied Mechanics and Technical Physics, Vol. 43, No. 3, pp. 432–438, 2002

THERMAL STABILITY OF A DISTURBED FLUID FLOW

UDC 532.72T. A. Bodnar’

Stability of periodic solutions of a non-self-similar nonlinear problem is studied. The problem de-
scribes the thermal state of an axial fluid flow with continuously distributed sources of heat. The flow
experiences the action of external low-amplitude perturbations changing in time in accordance with
known periodic laws. The spectral problem is solved by the method of parametrix, and the critical
conditions of the thermal explosion are determined in the linear approximation. Stability of the peri-
odic solution at the critical point is evaluated using the known theorem of factorization, which takes
into account the effect of nonlinear terms of the heat-balance equation. The calculation results show
that the periodic solution is stable if the total action of external periodic perturbations at the critical
point is directed to reduction of the fluid-flow temperature.

1. Formulation of the Problem. In the thermal explosion theory [1, 2], the physicochemical state of a
continuous medium with continuously distributed sources of heat is described by a system of equations of diffusion,
heat conduction, and kinetics. The case where the temperature field of the medium and the concentration field of
one of the reacting components limiting the exothermic reaction rate are similar is most comprehensively studied.
In this case, the diffusion equation is identical to the heat-conduction equation, and the problem of the thermal
state of the medium reduces to one equation in partial derivatives that satisfies some boundary conditions. In
dimensionless coordinates, the problem for a one-dimensional fluid flow with continuously distributed sources of
heat has the form

∂θ

∂t
= a

∂2θ

∂x2
− u ∂θ

∂x
+ ϕ(θ) (t0 6 t 6∞, 0 6 x 6 l, u > 0); (1.1)

θ(0, t) = 0,
∂θ(l, t)
∂x

= 0, (1.2)

where x is the coordinate, t is the time, θ is the temperature, a is the thermal diffusivity, u is the flow velocity
directed toward positive values of the x coordinate, t0 is the initial time, l is the coordinate of the right boundary of
the domain, and ϕ(θ) is the source function characterizing the heat-release intensity in the flow [generally, according
to the Arrhenius law, ϕ(θ) = z exp (θ(1 + βθ)−1), where β = const > 0 and z is the preexponent]. In problem
(1), (2), the transition to dimensional parameters and coordinates is performed by means of commonly accepted
coordinate and time scales given in [1, 2].

In [3], stability of the solution of the nonlinear problem (1.1), (1.2) was analyzed for time-independent
thermal diffusivity a, flow velocity u, and coefficients bk in the expansion of the source function into a series

ϕ(θ) =
∞∑
k=0

bkθ
k, bk =

1
k!
∂kϕ(0)
∂θk

. (1.3)

We consider problem (1.1), (1.2) for the case where the fluid flow is affected by time-dependent perturbations
considered as external control parameters. Let

a = a0 + a1(t), u = u0 + u1(t), b0 = b0(t), bk = bk0 + bk1(t) (k = 1, 2, . . .), (1.4)

Institute of Technology at the Altai State Technical University, Biisk 659305. Translated from Prikladnaya
Mekhanika i Tekhnicheskaya Fizika, Vol. 43, No. 3, pp. 109–116, May–June, 2002. Original article submitted August
15, 2001; revision submitted January 8, 2002.

432 0021-8944/02/4303-0432 $27.00 c© 2002 Plenum Publishing Corporation



where a0, u0, and bk0 are constants, a1(t), u1(t), b0(t), and bk1(t) are continuous periodic functions of time that
satisfy the initial conditions a1(t0) = 0, u1(t0) = 0, b0(t0) = 0, and bk1(t0) = 0.

The problem is to determine stability of the solution of the unsteady problem (1.1), (1.2) with allowance for
expansion (1.3) and coefficients (1.4). The free coefficient of series (1.3) is written in the form b0 = ∆b0(t), where
∆ is a function that takes the values 0 or 1. First, we study stability of bifurcation solutions for ∆ = 0 and, then,
stability of isolated solutions for ∆ = 1.

2. Stability of the Solution of the Linearized Problem. We write the linearized equation (1.1) for
∆ = 0 in an operator form:

Lθ = 0, L = (a0 + a1(t))
∂2

∂x2
− (u0 + u1(t))

∂

∂x
+ b10 + b11(t)− ∂

∂t
. (2.1)

To construct the fundamental solution of Eq. (2.1), we use the method of parametrix [4]. As the parametrix
G(x, t; ξ, τ), we use the following fundamental solution of the equation

L0θ = 0, L0 = a0
∂2

∂x2
− u0

∂

∂x
+ b10 −

∂

∂t

satisfying the boundary conditions (1.2):

G(x, t; ξ, τ) =
∞∑
i=1

exp
(
σi(t− τ) +

u0(x− ξ)
2

)
sinλix sinλiξ.

Here τ is the time within the interval (t0, t), ξ is the coordinate within the interval (0, l), λn are the positive roots of
the transcendental equation tan λl = −2λ/u0 located in ascending order (λ1 < λ2 < . . .) and σn = b10−u2

0/4−λ2
n is

the eigenvalue of the operator L0. By definition, G(x, t; ξ, τ) as a function of x, t for fixed ξ, τ satisfies the equation
L0θ = 0.

Let the flow temperature at the initial time t0 = 0 be distributed according to the law

θ(x, 0) = θ0(x) = exp
(u0x

2

) ∞∑
n=1

sinλnx. (2.2)

Then, the function

Θ0(x, t) =

l∫
0

G(x, t; ξ, 0)θ0(ξ) dξ

is the solution of the Cauchy problem [equation L0θ = 0 with conditions (1.2) and (2.2)]. After integration, we
obtain

Θ0(x, t) =
∞∑
n=1

exp
(
σnt+

u0x

2

)
sinλnx. (2.3)

Since the spectrum of the operator L0 satisfies the inequalities σ1 > σn for n > 1, it follows from (2.3) that
Θ0(x, t)→ 0 for σ1 < 0, and the steady solution of the equation L0θ = 0 is stable; for σ1 > 0, we have Θ0(x, t)→∞,
and the solution is unstable. Stability of the steady solution at the critical point σ1 = 0 for an algebraically simple
σ1 was investigated in [3].

The right side of (2.3) may be considered as the sum of projections of the solution onto the space of
eigenfunctions y0

n = exp (u0x/2) sinλnx (n = 1, 2, . . .) of the operator L0. Stability of the solution of the equation
Lθ = 0 at the point σ1 = 0 is determined by the projection onto the eigenfunction y0

1 , since the remaining projections
decrease exponentially with time. Therefore, in constructing the solution of Eq. (2.1) at the point σ1 = 0, we retain
only its projection onto y0

1 .
The fundamental solution Γ(x, t; ξ, τ) of Eq. (2.1) has the form [4]

Γ(x, t; ξ, τ) = G(x, t; ξ, τ) +

t∫
τ

l∫
0

G(x, t; η, ζ)Φ(η, ζ; ξ, τ) dη dζ,

where the function Φ(x, t; ξ, τ) is the solution of the integral Volterra equation
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Φ(x, t; ξ, τ) = LG(x, t; ξ, τ) +

t∫
τ

l∫
0

LG(x, t; η, ζ)Φ(η, ζ; ξ, τ) dη dζ (2.4)

with the kernel

LG(x, t; η, ζ) =
(
a1(t)

∂2

∂x2
− u1(t)

∂

∂x
+ b11(t)

)
G(x, t; η, ζ).

The solution of Eq. (2.4) can be represented as the sum

Φ(x, t; ξ, τ) =
∞∑
k=1

(LG)k(x, t; ξ, τ), (2.5)

where (LG)k+1(x, t; ξ, τ) =

t∫
τ

l∫
0

[LG(x, t; η, ζ)](LG)k(η, ζ; ξ, τ) dη dζ and (LG)1(x, t; ξ, τ) = LG(x, t; ξ, τ).

Convergence of series (2.5) for continuous (according to Hölder) functions a1(t), u1(t), and b11(t) was proved
in [4]. If we identify the Hölder continuity coefficient A with the maximum amplitude of periodic functions a1(t),
u1(t), and b11(t), then we obtain (LG)k(x, t; ξ, τ) = O(Ak). It follows from here that series (2.5) rapidly converges
for low amplitudes of perturbations of fluid-flow parameters.

The solution of the disturbed Cauchy problem [equations (2.1) with conditions (1.2) and (2.2)] is the function

Θ(x, t) =

l∫
0

Γ(x, t; ξ, 0)θ0(ξ) dξ,

which is the sum

Θ(x, t) = Θ0(x, t) + Θ1(x, t), (2.6)

where Θ1(x, t) is the part of the solution caused by the perturbations a1(t), u1(t), and bk1(t).
In the case of low amplitudes of perturbations periodic in time, we can ignore the terms of series (2.5) that

are nonlinear with respect to the amplitudes and represent the function Θ1(x, t) from (2.6) in the form

Θ1(x, t) = exp
(
σ1t+

u0x

2

)
sin(λ1x)ψ(l, t) +O(A2), (2.7)

where

ψ(l, t) =
lu2

0 + 2u0 − 4λ2
1l

8

t∫
0

a1(ζ) dζ − lu0 + 2
4

t∫
0

u1(ζ) dζ +
λ1l − sinλ1l cosλ1l

2λ1

t∫
0

b11(ζ) dζ.

As is mentioned above, Eq. (2.7) contains only the projection of the solution on the eigenfunction

y1(x, t) = exp (u0x/2) sin (λ1x)ψ(l, t), (2.8)

corresponding to the maximum eigenvalue of σ1. If the antiderivatives of the functions a1(t), u1(t), and b11(t)
in (2.7) are periodic, then ψ(l, t) = ψ(l, t + T ), and the solution (2.6) at the point σ1 = 0 is also periodic:
Θ(x, t) = Θ(x, t + T ). Generally speaking, it is not important how the function ψ(l, t) is obtained. It is only
necessary that it takes identical values in identical time periods T counted from the initial time.

Stability of the solution (2.6) depends on the sign of the eigenvalue of the parameter σ1, which is identified
with the parameter µ ∈ (−∞,∞). The solution (2.6) definitely loses its stability when µ passes through zero on its
way from the negative region to the positive one. The critical point µ = 0 corresponds to the critical parameters of
the fluid flow; when the change in the parameters involves an increase in µ, the thermal explosion occurs.

3. Stability of the Periodic Solution. To determine stability of the periodic solution of the problem at
the critical point µ = 0, we have to evaluate the influence of nonlinear terms in the right side of Eq. (1.1) on the
parameter µ. We assume that ∆ = 0 and ϕ(θ) = b1θ + b2θ

2 +O(θ3) and write Eq. (1.1) in an operator form

F (t, θ, µ) ≡ L(µ)θ + (b20 + b21(t))θ2 +O(θ3) = 0, (3.1)

where the linear operator

L(µ) = (a0 + a1(t))
∂2

∂x2
− (u0 + u1(t))

∂

∂x
+ µ+

u2
0

4
+ λ2

1 + b11(t)− ∂

∂t
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is obtained by substitution of b10 = µ+u2
0/4+λ2

1 into (2.1) for the operator L. Periodic solutions θ(x, t) = θ(x, t+T )
branch off from the solution θ(x, t) = 0 when µ, increasing, passes through zero. In accordance with [5], the solutions
of the nonlinear equation (3.1) in the vicinity of the point θ = 0, µ = 0 can be constructed in the form of series in
powers of the amplitude ε. The amplitude is the projection on the proper subspace associated with the conjugate
eigenvector y∗1(x, t) that belongs to the eigenvalue σ1 = 0 of the conjugate operator

L∗(µ) = (a0 + a1(t))
∂2

∂x2
+ (u0 + u1(t))

∂

∂x
+ µ+

u2
0

4
+ λ2

1 + b11(t) +
∂

∂t
.

Following the procedure used in determining the eigenfunctions of the operator L(µ), we can find the eigen-
functions y∗k of the operator L∗(µ). In studying stability of periodic solutions, it is of interest to consider the
conjugate eigenfunction corresponding to the maximum eigenvalue of σ1 at the point µ = 0:

y∗1 = B exp (−u0x/2) sin (λ1x)ψ∗(l, t). (3.2)

Here

ψ∗(l, t) =
lu2

0 − 2u0 − 4λ2
1l

8

t∫
0

a1(ζ) dζ − lu0 − 2
4

t∫
0

u1(ζ) dζ +
λ1l − sinλ1l cosλ1l

2λ1

t∫
0

b11(ζ) dζ

and B is the normalization factor. The normalization condition 〈y1, y
∗
1〉 = 1 is fulfilled if

B =
2λ1T

λ1l − sinλ1l cosλ1l

[ T∫
0

ψ(l, t)ψ∗(l, t) dt

]−1

.

In the space of real eigenfunctions of the operator L(µ), for each pair of the functions yn, y∗m, we determine
the scalar product

〈yn, y∗m〉 =
1
T

T∫
0

l∫
0

yny
∗
m dx dt.

For arbitrary n and m, the orthogonality conditions are valid: 〈yn, y∗m〉 = δnm, where δnm is the Kronecker delta.
We use the scalar product to determine the amplitude ε as the projection

ε = 〈θ, y∗1〉 =
1
T

T∫
0

l∫
0

y1y
∗
1 dx dt.

We seek the solution of Eq. (3.1) in the form of series in powers of the amplitude

θ(ε) =
∞∑
k=1

εkθk
k!

, µ(ε) =
∞∑
k=1

εkµk
k!

. (3.3)

The unknown functions θk and the coefficients µk satisfy the equations obtained by substitution of series (3.3) into
Eq. (3.1) and equating to zero the terms at the independent powers of the amplitude ε. Stability of the solution of
Eq. (3.1), which satisfies the boundary conditions (2.1) and the initial condition θ(x, 0) = 0, is determined at the
critical point µ = 0 by the first nonzero coefficient µk from the series µ1, µ2, . . . . To determine the first coefficient µ1,
one has to solve equations for the first and second powers of the amplitude:

L(0)θ1 = 0, (3.4)

L(0)θ2 + 2µ1θ1 + 2(b20 + b21(t))θ2
1 = 0. (3.5)

Equation (3.4) has the only solution θ1 = y1(x, t), which coincides with (2.7) for µ = σ1 = 0. Equation (3.5)
can be solved when and only when its inhomogeneous terms are orthogonal to the proper subspace of the operator
L(0) associated with the conjugate eigenvector y∗1 (Fredholm’s alternative). Hence, we have

µ1〈θ1, y
∗
1〉+ 〈(b20 + b21(t))θ2

1, y
∗
1〉 = 0,

and the coefficient µ1 is determined with allowance for the solution of Eq. (3.4) and normalization 〈y1, y
∗
1〉 = 1 in

the form

µ1 = −〈(b20 + b21(t))y2
1 , y
∗
1〉. (3.6)
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Fig. 1

In the general case, the co-factors of the scalar product in Eq. (3.6) determined in the rectangle (0, l)× (0, T )
are not equal to zero and are not orthogonal to each other; hence, µ1 6= 0. The latter inequality is valid for solutions
of non-self-similar problems periodic in time only if ∂2F (t, 0, 0)/∂θ2 6= 0 and σ1 is an algebraically simple isolated
eigenvalue [5].

In accordance with the theorem of factorization [5], the solution of Eq. (3.1) with respect to a small pertur-
bation θ̃(ε) in a small vicinity of the point (µ, θ) = (0,Θ(x, t)) has the form

θ̃(ε) = exp (−µ1εt)y1ε. (3.7)

It follows from (3.7) that the supercritical solution of the problem µ1 > 0 is stable, and the subcritical solution
µ1 < 0 is unstable. The uniqueness of the solution of Eq. (3.7) is reached by normalization ε = 1.

4. Calculation Results. The time and coordinate scales in the classical problem of thermal explosion
[1, 2] were chosen such that a10 = 1, b10 = 1, and b20 = 0.5−β for a zero-order exothermic reaction in the fluid. Let
the free-stream velocity be u0 = 1 and the coefficient be β = 0.05. For these values of the free-stream parameters,
we obtain the critical values λ1 = 0.867, l = 2.418, σ1 = 0, and the eigenfunction y0

1 = exp (x/2) sin 0.867x.
It should be noted that the system of two equations with respect to the periodic functions ψ(l, t) and ψ∗(l, t)

contains three independent variables a1(t), u1(t), and b1(t); hence, it has an infinite set of solutions. Therefore,
without loss of generality, we assume that

a1(t) = 0, u1(t) = A1 sin t, bn1(t) = bn0A2 sin t (n = 1, 2, . . .). (4.1)

The perturbation amplitudes A1 and A2 are not defined in more detail yet. Substituting relations (4.1) into
Eqs. (2.8) and (3.2), we find the eigenfunctions of the operators L(µ) and L∗(µ):

y1 = (1.105A1(cos t− 1) + 1.459A2(1− cos t)) exp (x/2) sin 0.867x.
(4.2)

y∗1 = B(0.105A1(cos t− 1) + 1.459A2(1− cos t)) exp (−x/2) sin 0.867x.

Here B = 4.303/(1.088A2
1 + 20.071A2

2 − 16.628A1A2) is a normalization factor.
Substitution of (4.1) and (4.2) into (3.6) yields the dependence of µ1 on perturbation amplitudes A1 and A2.

Figure 1 shows the dependence µ̃ = µ(A1, A2)B−1 (substitution of µ̃1 for µ1 in calculations eliminates division by
zero at the point A1 = A2 = 0). The normalization factor B is always positive; therefore, the solution of Eq. (3.1)
is stable for µ̃1 > 0 and unstable for µ̃1 < 0.

The calculation results show that µ1 > 0 and the solution is stable if the inequalities du/dt > 0 and
dϕ/dt < 0 are valid at the critical point µ = 0. Physically, this means that, in the critical thermal state of the
fluid, the temperature decreases due to the higher intensity of convective heat transfer through the right boundary
and the lower intensity of the exothermic processes in the fluid. For du/dt < 0 and dϕ/dt > 0, the solution is
unstable, since convective heat transfer through the right boundary in the fluid decreases at the critical point,
and the heat-release intensity in the fluid increases, which leads to an exponential increase in temperature. In the
remaining cases, stability of the solution of Eq. (3.1) is determined by the relationship between A1 and A2. Thus,
for A1 = A2 = 0.01, we have µ1 = −0.0349, and the solution is unstable (Fig. 2a); for A1 = A2 = −0.1, we have
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Fig. 2

µ1 = 0.0349, and the solution is stable (Fig. 2b). It should be noted that the reference point for the evolution of
small perturbations of temperature θ̃ in Fig. 2 is the solution of the corresponding steady problem Θ(x, t) at the
critical point µ = σ1 = 0.

5. Effect of the Free Coefficient b0 on Stability of the Solution. We return to Eq. (1.1) and rewrite
it with allowance for expansion (1.3) in the form

F (t, θ, µ,∆) ≡ L(µ)θ + b0∆(µ, ε) +
∞∑
n=2

(bn0 + bn1(t))θn = 0. (5.1)

As was shown above, periodic solutions of Eq. (5.1) are divided at the double point into stable and unstable
branches for ∆ = 0, and into isolated solutions that destroy bifurcation at the double point for ∆ = 1. It is
shown [5] that isolated periodic solutions caused by the periodic defect b0 may be found in the same manner as
steady solutions if 〈∂F (t, 0, 0, 0)

∂∆
, y∗1

〉
6= 0. (5.2)

Condition (5.2) and the theorem of the implicit function ensure the existence of solutions of the equations
F (t, θ, µ,∆) = 0 and ε = 〈θ(µ, ε), y∗1〉 = 1 with respect to θ(µ, ε) and ∆(µ, ε).

Double differentiation of the function F (t, θ, µ,∆) with respect to µ and ε at the point (µ, ε) = (0, 0) and
subsequent use of Fredholm’s alternative allow us to obtain, as in the steady case [3], two first nonzero terms in the
expansion of ∆(µ, ε) in powers of µ and ε:

∆(µ, ε) =
1
2

(∂2∆(0, 0)
∂ε2

ε2 + 2
∂2∆(0, 0)
∂ε ∂µ

εµ
)
,

∂2∆(0, 0)
∂ε2

= −
〈∂2F (t, 0, 0, 0)

∂θ2
y2

1 , y
∗
1

〉〈∂F (t, 0, 0, 0)
∂∆

, y∗1

〉−1

, (5.3)

∂2∆(0, 0)
∂ε ∂µ

= −
〈∂2F (t, 0, 0, 0)

∂θ ∂µ
y1, y

∗
1

〉〈∂F (t, 0, 0, 0)
∂∆

, y∗1

〉−1

.

Taking into account that

∆(µ, ε) = 1,
∂F (t, 0, 0, 0)

∂∆
= b0,

∂2F (t, 0, 0)
∂θ2

= 2(b20 + b21(t)),
∂2F (t, 0, 0)
∂θ ∂µ

= 1,

from (5.3) we find µ = µ1ε− µ10/ε, where µ10 =
1
T

T∫
0

l∫
0

b0y
∗
1 dx dt.

Stability of isolated solutions of Eq. (5.1) containing the periodic defect b0 6= 0 is determined as follows. If
the derivative ∂µ/∂ε at the point (ε,∆) = (1, 0) retains its sign when passing to the point (ε,∆) = (1, 1), then the
solution stable at ∆ = 0 remains also stable for ∆ = 1. As the sign of the derivatives is changed, stable branches
become unstable and vice versa.
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